1. Phương trình lượng giác cơ bản
a) Phương trình (sin x = a)
+) Nếu (left| a right| > 1) thì phương trình vô nghiệm.
+) Nếu (left| a right| le 1) thì phương trình (sin x = a) có các nghiệm (x = arcsin a + k2pi ) và(x = pi - arcsin a + k2pi )
Đặc biệt:
+) (sin f(x) = sin alpha ) ( Leftrightarrow left[ begin{array}{l}f(x) = alpha + k2pi f(x) = pi - alpha + k2pi end{array} right.left( {k in Z} right))
+) (sin f(x) = sin {beta ^0}) ( Leftrightarrow left[ begin{array}{l}f(x) = beta ^0 + k{360^0}f(x) = {180^0} - beta ^0+ k{360^0}end{array} right.left( {k in Z} right))
b) Phương trình (cos x = a)
+) Nếu (left| a right| > 1) thì phương trình vô nghiệm.
+) Nếu (left| a right| le 1) thì phương trình (cos x = a) có các nghiệm (x = arccos a + k2pi ) và (x = - arccos a + k2pi )
Đặc biệt:
+) (cos f(x) = cos alpha ) ( Leftrightarrow left[ begin{array}{l}f(x) = alpha + k2pi f(x) = - alpha + k2pi end{array} right.left( {k in Z} right))
+) (cos f(x) = cos {beta ^0}) ( Leftrightarrow left[ begin{array}{l}f(x) = beta ^0 + k{360^0}f(x) = - beta ^0 + k{360^0}end{array} right.left( {k in Z} right))
c) Phương trình (tan x = a)
Phương trình luôn có nghiệm (x = arctan a + kpi ).
Đặc biệt:
+) (tan x = tan alpha ) ( Leftrightarrow x = alpha + kpi left( {k in Z} right))
+) (tan x = tan {beta ^0}) ( Leftrightarrow x = {beta ^0} + k{180^0})
d) Phương trình (cot x = a)
Phương trình luôn có nghiệm (x = {mathop{rm arccot}nolimits} a + kpi ).
Đặc biệt:
+) (cot x = cot alpha ) ( Leftrightarrow x = alpha + kpi left( {k in Z} right))
+) (cot x = cot {beta ^0}) ( Leftrightarrow x = {beta ^0} + k{180^0},k in Z)
e) Các trường hợp đặc biệt
* Phương trình (sin x = a)
( + sin x = 0 Leftrightarrow x = kpi ;)
( + sin x = - 1 Leftrightarrow x = - frac{pi }{2} + k2pi ;)
( + sin x = 1 Leftrightarrow x = frac{pi }{2} + k2pi ;)
* Phương trình (cos x = a)
( + cos x = 0 Leftrightarrow x = frac{pi }{2} + kpi )
( + cos x = - 1 Leftrightarrow x = pi + k2pi )
( + cos x = 1 Leftrightarrow x = k2pi )
2. Một số chú ý khi giải phương trình.
- Khi giải phương trình lượng giác có chứa (tan ,cot ), chứa ẩn ở mẫu, căn bậc chẵn,…thì cần đặt điều kiện cho ẩn.
- Khi giải xong phương trình thì cần chú ý thử lại đáp án, kiểm tra điều kiện.
Loigiaihay.com
Link nội dung: https://vinaenter.edu.vn/phuong-trinh-luong-giac-co-ban-lop-11-a68352.html